23,822 research outputs found

    Convergence Theory of Learning Over-parameterized ResNet: A Full Characterization

    Full text link
    ResNet structure has achieved great empirical success since its debut. Recent work established the convergence of learning over-parameterized ResNet with a scaling factor τ=1/L\tau=1/L on the residual branch where LL is the network depth. However, it is not clear how learning ResNet behaves for other values of τ\tau. In this paper, we fully characterize the convergence theory of gradient descent for learning over-parameterized ResNet with different values of τ\tau. Specifically, with hiding logarithmic factor and constant coefficients, we show that for τ≤1/L\tau\le 1/\sqrt{L} gradient descent is guaranteed to converge to the global minma, and especially when τ≤1/L\tau\le 1/L the convergence is irrelevant of the network depth. Conversely, we show that for τ>L−12+c\tau>L^{-\frac{1}{2}+c}, the forward output grows at least with rate LcL^c in expectation and then the learning fails because of gradient explosion for large LL. This means the bound τ≤1/L\tau\le 1/\sqrt{L} is sharp for learning ResNet with arbitrary depth. To the best of our knowledge, this is the first work that studies learning ResNet with full range of τ\tau.Comment: 31 page

    Computational Quantum Secret Sharing

    Get PDF
    Quantum secret sharing (QSS) allows a dealer to distribute a secret quantum state among a set of parties in such a way that certain authorized subsets can reconstruct the secret, while unauthorized subsets obtain no information about it. Previous works on QSS for general access structures focused solely on the existence of perfectly secure schemes, and the share size of the known schemes is necessarily exponential even in cases where the access structure is computed by polynomial size monotone circuits. This stands in stark contrast to the classical setting, where polynomial-time computationally-secure secret sharing schemes have been long known for all access structures computed by polynomial-size monotone circuits under standard hardness assumptions, and one can even obtain shares which are much shorter than the secret (which is impossible with perfect security). While QSS was introduced over twenty years ago, previous works only considered information-theoretic privacy. In this work, we initiate the study of computationally-secure QSS and show that computational assumptions help significantly in building QSS schemes, just as in the classical case. We present a simple compiler and use it to obtain a large variety results: We construct polynomial-time computationally-secure QSS schemes under standard hardness assumptions for a rich class of access structures. This includes many access structures for which previous results in QSS necessarily required exponential share size. In fact, we can go even further: We construct QSS schemes for which the size of the quantum shares is significantly smaller than the size of the secret. As in the classical setting, this is impossible with perfect security. We also apply our compiler to obtain results beyond computational QSS. In the information-theoretic setting, we improve the share size of perfect QSS schemes for a large class of n-party access structures to 1.5^{n+o(n)}, improving upon best known schemes and matching the best known result for general access structures in the classical setting. Finally, among other things, we study the class of access structures which can be efficiently implemented when the quantum secret sharing scheme has access to a given number of copies of the secret, including all such functions in ? and NP

    Kinetic behavior of the general modifier mechanism of Botts and Morales with non-equilibrium binding

    Full text link
    In this paper, we perform a complete analysis of the kinetic behavior of the general modifier mechanism of Botts and Morales in both equilibrium steady states and non-equilibrium steady states (NESS). Enlightened by the non-equilibrium theory of Markov chains, we introduce the net flux into discussion and acquire an expression of product rate in NESS, which has clear biophysical significance. Up till now, it is a general belief that being an activator or an inhibitor is an intrinsic property of the modifier. However, we reveal that this traditional point of view is based on the equilibrium assumption. A modifier may no longer be an overall activator or inhibitor when the reaction system is not in equilibrium. Based on the regulation of enzyme activity by the modifier concentration, we classify the kinetic behavior of the modifier into three categories, which are named hyperbolic behavior, bell-shaped behavior, and switching behavior, respectively. We show that the switching phenomenon, in which a modifier may convert between an activator and an inhibitor when the modifier concentration varies, occurs only in NESS. Effects of drugs on the Pgp ATPase activity, where drugs may convert from activators to inhibitors with the increase of the drug concentration, are taken as a typical example to demonstrate the occurrence of the switching phenomenon.Comment: 19 pages, 10 figure

    Asymmetric Multi-Party Computation

    Get PDF
    Current protocols for Multi-Party Computation (MPC) consider the setting where all parties have access to similar resources. For example, all parties have access to channels bounded by the same worst-case delay upper bound ?, and all channels have the same cost of communication. As a consequence, the overall protocol performance (resp. the communication cost) may be heavily affected by the slowest (resp. the most expensive) channel, even when most channels are fast (resp. cheap). Given the state of affairs, we initiate a systematic study of asymmetric MPC. In asymmetric MPC, the parties are divided into two categories: fast and slow parties, depending on whether they have access to high-end or low-end resources. We investigate two different models. In the first, we consider asymmetric communication delays: Fast parties are connected via channels with small delay ? among themselves, while channels connected to (at least) one slow party have a large delay ? ? ?. In the second model, we consider asymmetric communication costs: Fast parties benefit from channels with cheap communication, while channels connected to a slow party have an expensive communication. We provide a wide range of positive and negative results exploring the trade-offs between the achievable number of tolerated corruptions t and slow parties s, versus the round complexity and communication cost in each of the models. Among others, we achieve the following results. In the model with asymmetric communication delays, focusing on the information-theoretic (i-t) setting: - An i-t asymmetric MPC protocol with security with abort as long as t+s < n and t < n/2, in a constant number of slow rounds. - We show that achieving an i-t asymmetric MPC protocol for t+s = n and with number of slow rounds independent of the circuit size implies an i-t synchronous MPC protocol with round complexity independent of the circuit size, which is a major problem in the field of round-complexity of MPC. - We identify a new primitive, asymmetric broadcast, that allows to consistently distribute a value among the fast parties, and at a later time the same value to slow parties. We completely characterize the feasibility of asymmetric broadcast by showing that it is possible if and only if 2t + s < n. - An i-t asymmetric MPC protocol with guaranteed output delivery as long as t+s < n and t < n/2, in a number of slow rounds independent of the circuit size. In the model with asymmetric communication cost, we achieve an asymmetric MPC protocol for security with abort for t+s < n and t < n/2, based on one-way functions (OWF). The protocol communicates a number of bits over expensive channels that is independent of the circuit size. We conjecture that assuming OWF is needed and further provide a partial result in this direction

    Asynchronous Multi-Party Quantum Computation

    Get PDF
    Multi-party quantum computation (MPQC) allows a set of parties to securely compute a quantum circuit over private quantum data. Current MPQC protocols rely on the fact that the network is synchronous, i.e., messages sent are guaranteed to be delivered within a known fixed delay upper bound, and unfortunately completely break down even when only a single message arrives late. Motivated by real-world networks, the seminal work of Ben-Or, Canetti and Goldreich (STOC\u2793) initiated the study of multi-party computation for classical circuits over asynchronous networks, where the network delay can be arbitrary. In this work, we begin the study of asynchronous multi-party quantum computation (AMPQC) protocols, where the circuit to compute is quantum. Our results completely characterize the optimal achievable corruption threshold: we present an n-party AMPQC protocol secure up to t < n/4 corruptions, and an impossibility result when t ? n/4 parties are corrupted. Remarkably, this characterization differs from the analogous classical setting, where the optimal corruption threshold is t < n/3

    On Broadcast in Generalized Network and Adversarial Models

    Get PDF
    Broadcast is a primitive which allows a specific party to distribute a message consistently among n parties, even if up to t parties exhibit malicious behaviour. In the classical model with a complete network of bilateral authenticated channels, the seminal result of Pease et al. [Pease et al., 1980] shows that broadcast is achievable if and only if t < n/3. There are two generalizations suggested for the broadcast problem - with respect to the adversarial model and the communication model. Fitzi and Maurer [Fitzi and Maurer, 1998] consider a (non-threshold) general adversary that is characterized by the subsets of parties that could be corrupted, and show that broadcast can be realized from bilateral channels if and only if the union of no three possible corrupted sets equals the entire set of n parties. On the other hand, Considine et al. [Considine et al., 2005] extend the standard model of bilateral channels with the existence of b-minicast channels that allow to locally broadcast among any subset of b parties; the authors show that in this enhanced model of communication, secure broadcast tolerating up to t corrupted parties is possible if and only if t < (b-1)/(b+1)n. These generalizations are unified in the work by Raykov [Raykov P., 2015], where a tight condition on the possible corrupted sets is presented such that broadcast is achievable from a complete set of b-minicasts. This paper investigates the achievability of broadcast in general networks, i.e., networks where only some subsets of minicast channels may be available, thereby addressing open problems posed in [Jaffe et al., 2012; Raykov P., 2015]. To that end, we propose a hierarchy over all possible general adversaries, and identify for each class of general adversaries 1) a set of minicast channels that are necessary to achieve broadcast and 2) a set of minicast channels that are sufficient to achieve broadcast. In particular, this allows us to derive bounds on the amount of b-minicasts that are necessary and that suffice towards constructing broadcast in general b-minicast networks

    From Partial to Global Asynchronous Reliable Broadcast

    Get PDF
    Broadcast is a fundamental primitive in distributed computing. It allows a sender to consistently distribute a message among n recipients. The seminal result of Pease et al. [JACM\u2780] shows that in a complete network of synchronous bilateral channels, broadcast is achievable if and only if the number of corruptions is bounded by t < n/3. To overcome this bound, a fascinating line of works, Fitzi and Maurer [STOC\u2700], Considine et al. [JC\u2705], and Raykov [ICALP\u2715], proposed strengthening the communication network by assuming partial synchronous broadcast channels, which guarantee consistency among a subset of recipients. We extend this line of research to the asynchronous setting. We consider reliable broadcast protocols assuming a communication network which provides each subset of b parties with reliable broadcast channels. A natural question is to investigate the trade-off between the size b and the corruption threshold t. We answer this question by showing feasibility and impossibility results: - A reliable broadcast protocol ?_{RBC} that: - For 3 ? b ? 4, is secure up to t < n/2 corruptions. - For b > 4 even, is secure up to t < ((b-4)/(b-2) n + 8/(b-2)) corruptions. - For b > 4 odd, is secure up to t < ((b-3)/(b-1) n + 6/(b-1)) corruptions. - A nonstop reliable broadcast ?_{nRBC}, where parties are guaranteed to obtain output as in reliable broadcast but may need to run forever, secure up to t < (b-1)/(b+1) n corruptions. - There is no protocol for (nonstop) reliable broadcast secure up to t ? (b-1)/(b+1) n corruptions, implying that ?_{RBC} is an asymptotically optimal reliable broadcast protocol, and ?_{nRBC} is an optimal nonstop reliable broadcast protocol
    • …
    corecore